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A study has been made of methods of solution of Maxwell's

equations in inhomogeneous isotropic plasmas. Results of that study are

given here. The results include a discussion of a general method of

reduction, for a variety of coordinate systems, of Maxwell's equations to

scalar differential equations for the separate field components. In

cartesian coordinates, reflection and transmission coefficients are obtained

for plane waves propagating obliquely through a stratified slab of plasma

of finite thickness and through a semi-infinite stratified plasma. Some

discussion is included concerning total reflection and Brewster's Law in

connection with stratified media.
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MATHEMATICAL METHODS IN THE STUDY OF
WAVE PROPAGATION IN INHOMOGENEOUS MEDIA

1. INTRODUCTION.

The material to be discussed in this report has been developed to

deal with some mathematical aspects of the interaction of electromagnetic

waves with ionized media. It is concerned primarily with methods of analysis

of Maxwell's Equations in a material medium, together with such additional

equations as may be needed to characterize the interactions of the waves

with the media, with the aim of obtaining from the set of equations certain

formulae describing the way in which the waves are reflected from, absorbed

in, or transmitted through the medium. In addition, questions of energy

propagation and wave front analysis are considered. The emphasis throughout

is on mathematical methods for describing the behavior of waves in media

whose electromagnetic properties vary in space. The methods, though

originally developed for the analysis of electromagnetic wave propagation

in inhomogeneous plasmas, may equally well be applied to inhomogeneous

dielectrics or to the study of acoustical wave propagation in inhomogeneous

fluids.

The system of equations which will be examined in this report will

be assumed linear. The latter assumption is a drastic one. However,

inasmuch as the solution of systems of nonlinear equations, even in the

case of homogeneous media, involves the use of analytical tools poorly

understood even by specialists in the field of nonlinear phenomena, it

seems wise to tackle first the problems associated with linear equations

in inhomogeneous media. The latter sometimes present knotty problems
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with which we hope to deal in this report, but the analytical tools (e.g.,

WKB methods) available for their treatment are much better understood,

The introduction of Maxwell's Equations into the analysis, and

their subsequent manipulation, leads to a vector differential equation for

the electric field E. The latter equation is equivalent to a set of three

scalar equations) with variable coefficients) in which the components of

E are "coupled." The "uncoupling" of these field components, that is,

the derivation of scalar differential equations for the individual field

components, is) in general, difficult, especially when one is dealing

with coordinate systems other than cartesian. In Appendix III we have

given a procedure for "uncoupling" the field components. The procedure

is certainly not applicable to the general case but assumed that the medium

in question varies as a function of only one space coordinate. Also, the

orthogonal curvilinear coordinate system to which the procedure applies is

not the most general. However, in spite of these limitations, the procedure

seems to be of sufficiently wide application to merit consideration.

In the treatment of reflection and transmission coefficients a

difficulty arises in the case of spatially non-constant media in that the

prescribing of the solutions of the relevant differential equations may

require, when one is discussing a semi-infinite medium, the prescribing

of boundary conditions at infinity, conditions which are not always easily

justifiable. A method of approach to this difficulty of prescribing

boundary conditions at infinity is presented in Appendix V. While this

* Capital letters without subscripts will be used to represent vectors in

this report. Otherwise, all symbols refer to scalars.
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method also presents difficulties of interpretation, it appears to shed

some light on the source of the boundary-condition difficulty just

mentioned and it also appears to be superior to any method presented in

the literature on wave-propagation analysis in inhomogeneous media.

II. DISCUSSION OF THE FUNDAMENTAL EQUATIONS.

In the subsequent discussion, MKS units will be used throughout.

The behavior of the electromagnetic disturbance in the medium under

consideration will be described mathematically by Maxwell's Equations. The

ionized medium under consideration will be considered to be a dilute plasma

at low pressures and isotropic, so that, among other things, polarizability

effects can be neglected, and the dielectric permittivity and magnetic

permeability of the medium will have, to a good approxmation, the values

which those quantities have in the vacuum, and these values will be denoted

by e and 0, respectively. Then it will be possible to write down the0

so-called "constitutive relations" D - EoE and B - toH. Hence, the only

way in which the influence of the material medium is introduced into the

problem is through the current density J appearing in one of Maxwell's

Equations. The introduction of the constitutive relations into Maxwell's

Equations leads to the pair of equations

Vx H - + J (a)

(1)
7x E - - ob- '(b)

The field variable H can be eliminated from the latter pair of equations

by the familiar procedure of taking the curl of the second equation and

replacing the resulting quantity Vx H by its equivalent from the first
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equation. The equation resulting from the elimination of H is

1 - -2 E o (2)y x V x Z -E c 2  t o - " a t *

The interesting solutions of (2) are usually the so-called "steady-state'!

solutions in which the field quantities are regarded as varying in time

with a single frequency. Hence, it will be assumed that, for any field

variable F, the time variation of F will be described by the relation

F - i F, (3)

at
where the radian frequency cu is assumed to be independent of both time

and space. With the assumption given in (3), Equation (2) becomes

2
x Vx E 2 E + iaioJ. (4)

c

The derivation of J as a function of E, together with some discussion of

the assumptions used in the derivation, is presented in Appendix I. The

relationship finally obtained for substitution into (4) is

2
J 0 E. (5)+ iv

Substitution of (5) into (4), followed by some re-ordering of the terms,

yields

7 xVx E = E. (6)

Since a good deal of the analysis to follow will not depend specifically

on the form of the coefficient of E in Equation (6), it will be convenient

to let

-4-
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K- P [ -i(7)

and Equation (6) then becomes

Vx Vx E - kE. (8)

The coefficient k in Equation (8) is now, in general to be

considered a complex function of the space coordinates. When k is constant,

or nearly constant the solution to (8) can be discussed in terms of the

"geometrical optical" approximation in which wave fronts and rays can be

described through the use of Hamilton's characteristic function S (eikonal

of Bruns), discussed in Appendix II. The quantity k plays the role of a

spatially varying index of refraction. However, as k gets close to zero the

geometrical optical approximation becomes less and less accurate, and some

new method of approximation must be used. In general, however, the problem

of ascertaining the behavior of an electromagnetic wave in an inhomogeneous

medium requires a detailed solution of the vector wave equation (8), the

features of the solution depending strongly on the prescribed functional

form of k. A more detailed discussion of the implications of various

approximate solutions can be found in reference 2.

III. PRELIMINARY DISCUSSION OF THE PROCEDURE IN SOLVING THE

FUNDAMENTAL EQUATION.

As yet, no commitment has been made in the above discussion to the

following, which will be discussed in the order given:

A. The restrictions needed on the functional form of k.

B. The types of waves (plane, cylindrical, spherical, etc.)

in terms of which the solutions to Equation (8) may be

constructed.
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C. The shapes of the boundaries of the media with which
C

the waves interact. Media may be assumed infinite in

one or more directions.

D. The choice of coordinate systems in terms of which the

solutions to (8) can be expressed.

E. The boundary conditions which must be satisfied by the

solutions to (8).

Each of the preceding five topics will now be discussed in turn.

A. The Functional Form of k.

Equation (8) is a vector equation for the unknown electric

field distribution E. As such, the equation is equivalent to a set of

three simultaneous linear scalar partial differential equations for

three unknown variables, the mutually orthogonal components of E, relative

to a prescribed three-dimensional orthogonal coordinate system. In general,

the components of E are said to be "coupled" in each of the three afore-

mentioned scalar equations. In Appendix III, a discussion is given of the

system in special cases.

The following observations should be made, however, concerning

the system 11(c) presented in Appendix III.

1. Solutions of III(c) which are amenable to further

manipulation for the mathematical derivation of such "observables" as

phase shift, absorption, reflection coefficients, transmission coefficients,

etc., generally require that two of the three unknown field components be

eliminated from the system II(c), yielding a single scalar linear homo-

geneous partial differential equation for a single field component.
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Alternatively, one may introduce new field variables, usually called "po-

tentials" (Hertz potential, scalar and vector potentials) and obtain scalar

equations for each of them.

2. The carrying out of the aforementioned elimination is

impossible, in general, when the coordinate system and the functional

form of k are arbitrarily prescribed. In fact, the elimination appears,

in the present state of the art, to be feasible, in general, only in the

case in which k is a function of only one coordinate.

3. If the dependence of k and of E on the coordinates is not

suitably chosen to conform to fhe shapes of the bounding surfaces of the

media in question, a further difficulty arises in setting up and solving

the relations engendered by.the boundary conditions at the bounding

surfaces.

For the reasons just given, the only inhomogeneous medium

problems which have so far yielded substantially to mathematical and

numerical treatments are those involving so-called "stratified media."

The latter media may be regarded as being built up of "lamina" of homogeneous

material, or they may be continuously varying in one coordinate direction.

4. In discussions of homogeneous media it is frequently desirable

to resolve the solutions of (8) into "outgoing" and "incoming" waves. In

the very simple situation involving two homogeneous media separated by an

infinite plane interface, the incoming wave in one of the media is often

discarded completely, the physical reason being that no source of energy

exists at infinity in that medium. However, even in the simplest case of

waves propagating in the direction of variation of a medium varying in
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only one direction, it is not always possible to express the solution of

(8) unambiguously in terms of two solutions, one of which can be identified

as an "outgoing" disturbance, while the other can be regarded as an "incom-

ing" disturbance. Some examples illustrating this point are cited in Appendix

IV.

B. Types of Waves Used in Setting Up Solutions.

The first and most important remark to be made here is that

a wave of one type can be represented as a (usually infinite) sum of

waves of another type. Specifically, a spherical wave can be represented

as the sum of plane waves (cf. ref. 3, p. 238 and ref. 6, chap. VI). This

amounts to writing the expression for the spherical wave as a Fourier

series or as a Fourier integral. Similar remarks can be made for other

types of waves. The selection of the type of wave in terms of which the

solution to the wave equation will be expressed will generally be determined

by shapes of the boundaries at which boundary conditions are prescribed.

Thus cylindrical boundaries will, in general, lead to the choice of cylindri-

cal waves as the most convenient "basis" for the solution.

C. Boundary Shapes.

The vast majority of boundaries encountered in wave problems

are either plane, cylindrical, or spherical. Many problems of practical

interest can be framed, perhaps as an approximation, in such a way that

the boundaries in question are plane. Furthermore, while problems

involving other boundary shapes can be solved, their solution involves

the use of more sophisticated analysis (notably intricate contour inte-

grations in the complex plane) which would tend to bury the physical
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conclusions in a welter of analytical detail. Therefore, the surfaces at

which boundary conditions will be prescribed in this report will always be

taken to be plane.

D. Choice of Coordinate System.

It is a familiar fact that the solution to boundary value problems

is often facilitated when the coordinate system is chosen so that the

boundary surfaces are coordinate surfaces. Since this report is committed

only to the discussion of boundary value problems involving plane boundaries,

all boundary value problems in the report will be treated in terms of

cartesian coordinates. However, some attention will be given, especially

in Appendix III, to the manipulation of Equation (8) in other coordinate

systems.

E. Boundary Conditions.

Following the conclusions arrived at in Stratton (ref. 6, p. 37),

we shall assume that the tangential components of E and H are continuous

across any boundary at which the conductivity is finite. The continuity

conditions will be used in Appendix V, where reflection and transmission

coefficients are derived for plane waves. More difficult decisions are

posed in considering the behavior of the solutions to the wave equation

at infinity in cases in which the inhomogeneous medium extends to infinity

in the direction of the gradient of k. In view of the conclusions implied

by the discussion given in Appendix IV, only those cases are considered in

which the solutions of the wave equation have, for large values of the

argument, asymptotic forms which have a wave-like character.
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IV. FURTHER DISCUSSION OF THE SOLUTION OF THE FUNDAMENTAL EQUATION.
REDUCTION TO EQUATIONS FOR EACH FIELD COMPONENT.

In Appendix III a scalar partial differential equation has been

derived, under certain restrictive assumptions, for each of the components

of the electric field E. The results are summarized below. For each

coordinate system the scale factors (described in Appendix III) are given,

and the assumptions are given under which the differential equations for

the various field components were derived. The Differential equations are

special cases of IlI(J), Ill(k), and Ill(p).

A. Cartesian Coordinates (xyz). Scale factors: h - h = h - 1.
x y z

The quantity k is assumed to be a function of x only. The field

components Ex, Ey, E are assumed to be independent of y. They satisfy

x y z

the following equations:
2 2

(Dx  + Dz + k) Ey = 0 (a)

D 1 2D D) ( kE ) + D2 + kE = 0 (b) (9)

(Dz  + k) k Dx2 + Dz
2 + k] E +

+ {(Dz2 DEz) (Dxk)3 - 0 (c)

B. Circular Cylindrical Coordinates (r, 9, z). Scale Factors:
hr =h z - 1, h- r.

The quantity k is assumed to be a function of r only. The field

components Er E8 , E. are assumed to be independent of 0. They satisfy the

following equations:
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( D + 1D2 +(a)
r r r r z r 2

D ( - D ) (rkE ) - - [ D (rkE) + r (Dz + k)E = 0 (b)r k r r r Lkr r]j

(Dz2 + k) k [DrD + rD +k]) E+ (10)

+ r(Dz2 Dr Ez ) (Drk) - 0 (c)

C. Spherical Coordinates (r, 0 , 8). Scale Factors: h - 1,
h - r sin9 , he r.

The quantity k is assumed to be a function of r only. The field

components Er, E , are assumed to be independent of 4. They satisfy
the following equations:

in 0 Dr2 + Do r2 s1n DO) + k sin 03 (r sin OE ) - 0 (a)

in D ( D (r kE + D eD+ r k sin E rE 0 (b)

(11)

D sin 0 DrE = (D D sin GD8 + k sin e) E (c)

The latter equation is from Equation III(i1) of Appendix III.

The sets of Equations (9), (10), and (11) are suitable for appli-

cation in a variety of interior and exterior boundary value problems, e.g.,

waveguide and scattering problems. The limitation that the field components

must be independent of u2, however, restricts their use somewhat. As was

mentioned in Appendix III, analogous sets of equations can be derived with-

out the aforementioned restriction, but the equations can become quite

cumbersome. Only the set (9) will receive further attention in this report.
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V. THE REFLECTION AND TRANSMISSION COEFFICIENTS FOR PLANE WAVES.

In this section formulas will be given for the reflection and

transmission coefficients for a plane wave obliquely incident on the plane

interface separating a homogeneous medium from a stratified medium. The

formulas will be derived in Appendix V on the basis of the following

assumptions:

(i) The medium is stratified in the x-direction; i.e.,

k is a function of x alone.

(ii) The stratified medium is bounded by infinite parallel

planes at x - 0 and at x - d. The plane wave is

assumed to be incident on the x - 0 plane, from the

negative x-direction.

(iii) The plane of incidence of the incident plane wave is

the x-z plane so that all field components are

independent of the y-coordinate and can therefore

be determined from the system (9). (There is no

loss of generality in this assumption, since the

y-axis can always be taken to lie in the x - 0

plane and orthogonal to the direction of propagation

of the plane wave.)

(iv) The electric and magnetic field components Ey, Ez) H y

H are continuous everywhere. The boundary conditionsz

on these field variables are that they are continuous at

x - 0, and at x - d, for every value of z.

The derivation of the reflection and transmission coefficients

will employ the traditional method of considering two separate cases:

the case in which the incident electric field is polarized perpendicular
,

to the plane of incidence (TE-wave case) and the case in which the magnetic

* These designations TE-wave and TM-wave are adopted from Born and Wolf.

-12-



field is polarized perpendicular to the plane of incidence (TH-wave case).

Since the incident electromagnetic field can always be resolved into

components described by these two cases, the reflection and transmission

coefficients will be completely determined by the formulas derived in

these two cases.

A summary of the formulas derived in Appendix V is given below

(refer to Figs. 1 and 2 in Appendix V for the meanihg of the symbols).

TE-WAVE CASE

-+O (o) ~ (0) 4(a)

D= ik 3 cos 93

(d) - (d (d) #.(d)

2 3 3

D 2 =ik 3 Cos 0 3
I I

/(d) (d) = 1 (d) ( o(d)

D + (ik1 cos 1)

B - (ik1 C A

21k I con@e { (d) -ik 3 cose 93 8(d)

21k1 cos I [+(d) - ik 3 cos 3  (d
A A1

- 13 -



-21k Cos 01  +()(d) - d+(d) ck(d) -ik d cos e
A3  A Ae

B1 1 2

A3 2 P3 cos @3
TJ A 1 k Cos 91

TM-WAVE CASE

I I

+ ( ) 0 -(o) (o) ,,.(o)

G1 , ik(d) cos e3k3

+ O(d) (d)A'(d) / d

(0)_o ,,+0o) 

G2= ik(d) Cos 3
k 3

10 d) 09(d) /(d) ((d)

G V0 Cos G 2
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-2 c los o (d) ik(d) cos e3 (.(d

a2  a 1

ik(o) o eI  (d) -k3 1
2 1'' + 3

-2 ik(o) cos /1 L0 (d) O (d)- / 0 (d) /0 (d)] -ik3d

3  + + aYle 3coo 3

3 =$

2

a3  cos e3
aI cos e1

An important difference between the two cases is the following:

The TE-wave case depends on the form of the functions +(x)

and 4. (x) which are solutions to the differential equation

S" + (k - y2) = 0, while the TM-wave case depends on the

form of the functions /0 +(x) and _(x) which are solutions to

the differential equation ( k -+ (k f) 0i = o+ (k

equations V(a), V(p), V (q)). Note that the two differential

equations are the same when k is constant. Hence, this

distinction between the two cases is introduced when we allow

k to vary in space.

The case in which medium II is homogeneous, with propagation constant k2, is

so instructive for its lessons in the inhomogeneous case that we introduce

it here. For this case, the following relations hold:

+ ik x cos 2
W(x) e 2 2 10 (x); k1 sin 91 k 2 sin 82  k 3 sin 93.+

-15 -



TE-WAVE CASE

D 1 2k 2 cos 2 -k3 cos 3 cos (k2dcos 92 ) + k o 2 sin (k 2d cos 92]

D= 2i /ik 3 cos e3 sin (k2d cos 02) + k2 Cos e2 Cos (k2d Cos e2)]

2k I Cos 91 [k 3 cos Q 3 -k 2 cos Qj
2 A

Now note that B2, for example, is the amplitude of the wave propagating

backward in medium II, essentially the reflected wave from the interface

between medium II and medium III. This reflection can be extinguished by

having k 3 ff k 21 whence k 3 cos @3 = k 2 cos 92 (consequence of Snell's Law)

and B2 = 0. The latter observation suggests a means for our determining

the behavior of the disturbance in medium II when the latter is inhomo-

geneous and semi-infinite (d o cD). We proceed as follows: let medium
/ 2'

III be homogeneous with the propagation constant k(d) - y which medium

II would have were it suddenly to become homogeneous at x = d, keeping the

value of the dielectric permittivity which it attains at x = d, as dia-

grammed below

medium I medium II medium III

'I

0 x 0 d
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Then, instead of characterizing the obliquely propagating wave by a propa-

gation constant k cos 03 in medium III, we replace it by a quantity 0-(d),

dependent only on d. It can be seen then that B2 (reflection amplitude in

medium II)

2ik1 cos 1 +(d) - ia-(d) +(d
B2 = 1 A,.

Now, suppose that the ordinary differential equation determining 4(x)
admits of two solutions 4 +(x) and _.(x) with the property that

d '-% co [ d] =+ -(d) 4,(d).!±

That is, for large values of d, we may replace 4> (d) by ± i 7-(d) 4 (d),
± ±

to a good approximation. Then B2 ---9 0 as d -- cD. Let us now calculate

the reflection coefficient in medium I, for large d, using the aforementioned

assumption. According to the table on page 131
-D1 + ik I cos 1 D2 -+(o) + ik, cos A1 +(6)

B 1 D +ikCos 0D A
1 D1 + ik 12 =  +(o) + ik cos 01 +(o)

+ 1 1 +
BI2

It follows from the latter relation that R - 12 will be equal to
unity (total reflection case) if +(o) - 0 or if cos

61 = 0 (grazing incidence). When medium II is a homogeneous medium so
ikxcos68

that $ +(x) = e , the non-trivial total reflection condition

becomes cos 62 = 0, in agreement with the familiar result. Note that,

from the continuity conditions, Snell's Law yields k1 sin a1 = k(o) - (o).

The condition (o) = 0 is a kind of eigenvalue condition which will

+
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determine 0-(o), which will in turn determine the angle 01 for total

reflection. Note, also, that the condition 4 +(o) - 0 might relate the

reflection to the region in the dielectric where the index of refraction

vanishes, but only when + +(x) is approximately representable in complex

exponential form (propagating wave) near x = 0. Otherwise, almost any

condition, unrelated to the index of refraction, might arise. All of

these observations apply only to the lossless case, of course,

The above remarks have all applied to the TE-wave case. In the

TM-wave case, it is possible to deduce for a semi-infinite medium a

condition on the angle of incidence 01 such that R -0. The specific

angle of incidence in this case is called the "Brewster angle." In this

case we must argue, not on the functional behavior of Wx), but on the

behavior of a function /P (x) which is, in general, entirely different from

4(x). The argument here, however, parallels the preceding one and yields

the condition

k (o)
c~) os 01=-i +

ik x cos 92

for the Brewster angle. When /0+(x) - e , the latter condition

becomes k2 cos 81 = k1 cos 82. Combining this with Snell's Law, kI sin

S1 . k2 sin e2, we get sin 20 - sin 29 . In the non-trivial case, the

latter condition implies 9 - - 9 • Substituting this in Snell's Law,
2 2 1*

we get k1 sin 01 - k2 cos e1, or tan 01 = k2/kl, yielding Brewster's

angle for the case in which medium II is homogeneous and extends to

x -+ c0.

-18-

_________



It is of considerable interest to note that, when medium II is

homogeneous and semi-infinite, no zero-reflection situation can arise

in the TE-wave case and no total reflection can arise in the TM-wave

case. However, when medium II is allowed to be inhomogeneous, both

reflection situations can exist in either case. The examples are too

complicated to cite here, but some information on the subject can be

found in Reference 7, page 19.

VI. CLOSED-FORM SOLUTIONS OF THE WAVE EQUATIONS.

The question will arise as to what functional forms for k(x)

will permit the closed-form solution of Equations (9-a) and (9-b) simul-

taneously. Aside from the trivial case of k(x) constant there is the case

of k(x) proportional to eCX where C is any constant. The solutions in

this case will be given in the form of Bessel functions. In general,

exponential variations for k(x) seem to show the most promise in this

connection. When k(x) is a linear function of x, Equation (9-a) admits

closed-form solutions in terms of Airy or Bessel functions, but Equation

(9-b) does not seem, in this instance, to admit closed-form solutions in

terms of known functions. The whole question discussed in this section is

still under investigation.
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APPENDIX I

Dependence of J on E

The equation for the current density which will be used in this

report is that derived by Spitzer (ref. 1, p 21, equation 2-12). In our

notation (J - current density) and in our system of units (MKS), the afore-

mentioned equation of Spitzer is as follows:

-- E + v x B + IV P x B - Q J. (Ia)2en e e en

The following assumptions will be made:

i. v - 0 since the medium is assumed to be at rest over all.

ii. A new quantity, w p, the plasma frequency, defined by

2 ne
2p e will be introduced.

p me Eo

iii. The coefficient r , used in Equation (Ia) is essentially

a measure of energy dissipation. We introduce in its place
n e2

the dissipation parameter v defined by v - e I .
m

e
iv. The most drastic assumption is that the term

- J x B is negligible with respect to the other
en

quantities appearing in Equation (Ia). This assumption

is essentially that the field amplitudes are small

(small-signed theory) and that the medium is isotropic.

Equation (Ia) then reduces to

dJ + vJ a E + (Pe" (Ib)
dt p o
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At this point it becomes desirable, mostly for the purpose of

simplifying the mathematical treatment, to assume that all of the field

quantities vary in time at a single frequency w, so that for any field

variable F whatsoever, ic- -iLF. It follows from the latter assumption
at

that Equation (Ib) can be expressed as follows:

(-iw+v)J- 2 E + Ep e

or

j= p E + VPe" (Ic)
I W + iv I 

iv]J

On the basis of elementary kinetic theory, one concludes that pe e nkTe
2

or pe W p2 (E ok/e)T. It follows that Pe may make an important contri-

bution to J whenever Te V ne is sufficiently large. The inclusion of Vpe

in J would, when substituted into Equation (4), yield an inhomogeneous I
partial differential equation for E, an equation with quite important f
consequences. However, in any event it would be necessary to solve the

homogeneous equation first in order, for example, to obtain the Green's

Function for the boundary-value problem in question. Hence, it has been

considered desirable here to consider first the consequences of having

SPC = 0. The latter assumption, in our context, is tantamount to

considering a zero-temperature plasma. The final formula for J which will

be used in connection with Equation (4) is
2

J = 0 E.

1W + iv]

* cf. e.g., A Sommerfeld, Thermodynamics, etc. pp. 8-12.
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APPENDIX II

Hamilton's Characteristic Function (the Eikonal of Bruns)

A brief discussion will be given here of the eikonal (characteris-

tic function of Hamilton) defined by H. Bruns. Equation (8), introduced

in the main body of the report, is

x Vx E - kE, (IIa)

where k is a scalar function of the coordinates and E is a vector function

of the coordinates. Taking the divergence of both sides of (IIa) yields

0 -V (kE) =E Vk + k E (IIb)

whence

V E - - E (V k/k). 
(IIc)

Now, with the help of (IIc), and the relation NxVx E -7(7 E) - V 2 E"

we may rewrite (lha) as follows:

V2E + kE = [E . Vk] (IId)

If k were constant, Equation (IId) would reduce to the familiar vector

Helmholtz equation for E, for which we could give the solution

E - Aei(k 1 x + k3z) in cartesian coordinates, where k1
2 + k22 + k32 . k,

and A is a constant amplitude. With the latter remark in mind, we try to

"fit" a solution of the form

E = Aeis (lie)

to the Equation (lid), where A and S are now permitted to vary in space.

We substitute (IIe) into (IId) and ascertain the conditions under which

(Ile) will be, approximately, a solution to Equation (IId). The solution

(IIe) is the "geometrical optical" approximation to the solution to

• For a more detailed discussion of the material introduced here, cf. ref.
6, p. 243, and ref. 7, pp. 207-210.
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Equation (1ld). In cartesian coordinates, the substitution of (IIe)

into (Ild) yields the result

A Ik (V S) A+ (A • +

(hif)

+i AV S+2 ( A) " (17 S) + A(7 S) --2"]. 0

The latter equation will be satisfied approximately in a non-trivial

fashion if, approximately, the following equations are simultaneously

satisfied.

(VS)2 =k (gl)

2 + 7(A • ) = 0 (g2 ) (Mg)k

A V2S + 2( A) ( S) + A( 7S) . Zk - 0. (g3)k (3

The solution S(x,y,z) to Equation (IIgl) is called the eikonal,

and Equation (IIgl) is called the eikonal equation. The function S is

important in optics because the surfaces S = constant are the surfaces

of constant phase, and they may be thought of as the wave-fronts determining

the mode of propagation of the waves. The normals to the surfaces of

constant phase determine the directions of the "rays" or paths along which

the waves propagate.

Obviously, if k and A are constant in space, the system (hig) is

satisfied exactly if

(V7S) 2 = k (h1)

2= 0. (h2) (IIh)

-24-
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Now, the substitution of (IIe) into (IIb) yields the result

A k

Now, if for any reason (e.g., a constant and orthogonal to Vk) we have

k + A = 0, then A • S - 0, which says that the field direction

is transverse to the direction of propagation, since V S is in the direction

of a ray, while A is in the direction of the field. (The case in which k

is a function of x alone and A - 1 y - 1 z is an interesting non-trivial

example.)

Other relations analogous to the above can be derived by combining

the various equations in other ways. The assumptions under which they can

be derived appear to be far less stringent than the assmptions used, for

instance, by Sommerfeld in his discussion of the eikonal.
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APPENDIX III

Reduction of Equation (8)

In this section Equation (8) will first be expressed in component

form. The resulting system of equations will then be transformed to another

system after certain restrictions are imposed on the system.

Let u , u2, u3 represent the three coordinates of an orthogonal

coordinate system in three-dimensional space. The distance ("differential

arc length") ds between two points (ul, u2 , u3 ) and (u1 + du1, u2 + du2

u3 + du3) very close together is given by the formula

ds 2  hl2 du12 + h22du22 + h 32du32 (IIIa)

where hl, h2) h3 are functions of u1 u2, u3 and are sometimes called

the "scale factors" for the given coordinate system. The following table

lists the scale factors for some important coordinate systems (cf. ref.

6, p. 47 ff.):

Coordinate system (uh u21 u3) h1 h2  h3

Cartesian (xyz) 1 1 1

Circular cylindrical (r, 0, z) 1 r 1

Spherical (r, 0 , e) 1 r sin e r

Elliptical cylinder (z, , q ) 1 -2 c 2

The unconventional ordering of the latter two coordinate systems has been

used here for later reference. In order to express the components of (8)

in convenient form we introduce the differential operators Dl, D2, D3

defined by
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Di = i -i, 2, 3 (IIb)
ui '

where 4 is an arbitrary function of U1 , u2 , u 3 . Let Ei be the component

of E in the direction of the coordinate ui for i1 , 2, 3. Then (cf.

ref. 6, p. 50) the vector equation (8) can be expressed in component form

as follows

-h3  D/ +h 2  h 2-
- [D2 (hi h D2 2  + D 3 h i D3 )+ h 3  h1 k (hlE 1) +

+ D 2 ( h D) h 2E2 + D h 3 hil D) h 3E3 = 0 (Cl)

~ D2) h1E1 - 1  112 Dl') + D 3 (i- 2 +h3

+ D3  h3 D h3E3 = 0 (c 2)

(IIIC)

h (K -2 hE 1  D3) h E -

1 hl D 3)/ h 1(1 + D 2 2

D D hlDl) + D 2-F D- 2) ( ) 3E3 (c 3)

From Equation (8) it also follows that div(kE) = 0, which can be written

D1(h2h3kE1 ) + D2(h3h1kE2) + D3 (hlh2kE3) = 0. (IIId)

In the light of the remarks made in Section IIIA, no attempt will

be made here to reduce the system (IhIc) given above; but we shall consider

a special case of frequenc occurrence and of great importantance, 7njiely; -the

case in which hI =1, k a function of uI only, and the ratio of h2 to h3

-27-
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is a product of functions, each of which is a function of only one of the

coordinates. The latter assumption is satisfied in any generalized

cylindrical coordinate system and in spherical coordinates. The following

useful relation can then be established:

Di( - j) (h, L2 aDj (L3Dj) (h 2 ) for i, j = 1,2,3, 1i0j

where 0 is an arbitrary function of the coordinates. The proof of the

latter relation proceeds as follows:

Di(L2 D~~ (h, Di (2- Di' j 4. ) L3 Di [Djh 2 (D +3 2h
3h J )h2 h3

- Dik( L3Di) ( ~ + (h# LDiDj ( n L3).

By virtue of the assumption about the ratio h3 /h 2, the bracketed quantity

in the second term in the last line must vanish, yielding the desired

result. One may interchange the subscripts 2 and 3 in (IIel) to obtain

another relation, namely,

3~'~D~ (h2  L3 =~ Dj ( L D,~) (h3  ) for i,j =1,2,3, i ,0 J.
J) 2 3(II1e 

2)

By suitable manipulations using (llle1 ) and (llle 2 ), one may prove the

following:

h 3 \ (h2
2, (-h D3) 2 D (h (LD) (h3 ) E 2(d ,n D )D(h E ) (f)

(IIIf)

-28-

I



2h 2\ (hD !3 D\ h 2(Dl (h hD, (W3- 2 D) E
h3  3~~ D)(E 2) 2 hD 2 \ D) h2E2) h 2 32 f2

(ITif)

Now, starting with Equation (I1Icl), we obtain

LD2 (T D2 + 3 2 D3 ) +hhk] El - 3 (ha D 1) (h E)

= D2  D (h2E2  L3 D1 (!- D2) (h 3 E2 ).

Now Equation (IIId) becomes, with h1  1, and k a function of uI alone,

k Dl(h 2h3kE1 ) 
+ D2 (h3E2) 

+ D3(h2E3) 0. (IIg)

Solving (IIIg) for D2(h3E2) and substituting the result into the last

expression in the last line above, we get

L 32( D2) + D3 (!- D33) +h h k] El - D (K-2 D (h 3E3)

h3 /
=j- D, (K-2 -1Dj) (h h kEl) - -D 3 (h2E)

The latter equation, when rearranged, yields, with the help of

(IIIf1 ),

h 3 D 1  h2 D + D3 (h D 3)+h3 h 2 k]E I(i2 -1 13) (h h kE) + LD(h D2) + 3 ( 33' H~~]E
( k2h 3  (h2  h

= D3  1 (h 3 E3 ) -2 D1 (- D)(hE 3 ) - 2(D1 h2 n D(hE
3 333) T32 3 23)

(IM'-l
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Similarly, starting in a different way from (1l1cl),we may prove

h 2 h1
D, (!- -1 ) (h h kEl) + [ !-3( D2) + D (W- D) + h hk]E

2(D I in L2 ) D2 (h E2 )' (IIIh2 )

3

Now, in cartesian and spherical coordinates, Equation (IIIh1) or (IIIh 2)

already yields an equation for El, since, in these cases D1 ( n 0.
3

In circular cylindrical coordinates, however, a complication still remains,
h1

since -hD n 3 n r A r 0. In order to avoid even more
1 h 2  r r

tortuous manipulations, we shall at this point make the additional assumption

that all variables are independent of u2. This is tantamount to setting

V2 = 0 wherever D2 appears in the equations. Equation (IIIh 2) then reduces

to

h2 V(/h 1i h 3
h 2 V (h 23kEl) + (V3 2 D + h3h 1 = 0. (IIIJ)

h 3 h 2 k (hh3E ( h3 3) 3h-2 E

Also, we obtain immediately from Equation (IIIc2) the equation

ED1 ( D) D3  (hDh 3  D3 )+ h] (hE 2 ) = 0, (IIIk)

an equation for E2 alone. Equations (IIIc1 ) and (IIIc3 ) reduce to

h2
2

D(T D3 ) + hhkj El = D3 (L2 Dl) (hE)

D ~~ ~ 2 + 2k7( 3 .(2

(h D 1 3D~ D h 3  3 3 2)
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By further algebraic manipulations the latter system can be solved to

obtain an equation for E3 alone. From a practical standpoint, however,

after E1 is obtained from Equation (III ), E3 is easily obtainable from

Equation (IIIl)' by some simple integrations.

We present here the elimination of E1 from the system (IIIi) for

cartesian and circular cylindrical coordinates. Then h3 = 1, and h2 is

independent of u3. The system (III1) becomes

(D3
2 + k)E 1  DDE (i 1 )

(III )

D1 h2 D3 1 (DIh 2D1 + h2k)E3. (m2 )

Multiplying (IIIm) on the left by the operator D1h2 D3, (IIm2 ) on the

left by the operator (D3
2 + k), subtracting the latter from the former, and

simplifying, we obtain

23 Dh + -- h D E1  0. (IIIn)

2
Multiplying (IIIn) on the left by the operator (D3 + k), and using

Equation (Illml), we obtain finally

(D3
2 + k) [D h2D1 + h2 D3

2 + h2kj E3 + j h2D3
2 D1E3  0, (IIIp)

thus obtaining an equation for E3 alone.
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APPENDIX IV

Special Solutions to the Wave Equation

In this special case in which the electromagnetic wave is

propagating in the direction of the gradient of k (x-direction) the electric

field E will be a function of x alone and will satisfy the ordinary

differential equation

2d2E + kE - 0. (IVa)

dx
2

When k has the function form given by

kx-Ax+ B 5 AD - BC, (IVb)k(x) Ax+

(Cx + D)5

where A, B, C, and D are constants, then Equation (IVa) has the solution

E = D1Ai 12/3 ]x + D Bi2/3 i ]x?+ (CX + D),
(IVc)

where D1 and D2 are arbitrary constants and Ai[ I and Bi[] E are the Airy

functions of the argument . Now, in general, it is not possible to

identify one of the solutions in (IVc) as a "forward-propagating" wave,

since such an identification would require an examination of the behavior

of the functions for large arguments, However, in this case such behavior

need not be relevant to the problem at hand, since the argument may not

ever become large in the region of interest of this problem. In the event

that k(x) has the form given by (IVb), we may avoid the issue by discussing

* cf. ref. 2, pp. 44 and 45.
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only inhomogeneous plane sheets of finite thickness, bounded by semi-

infinite, homogeneous media.

The following example is discussed in Reference 3, p. 229. The

example is originally due to Schelkunoff.

Suppose E to be given as a function of x of the form

E(x) = cos Px + ce i x , (IVd)

where p and E are constants. When E << 1, this function describes an

essentially standing wave, since the first term will be dominant. However,

this function can be written in the form

E(x) = A(x)ei $ (x) (el)

A(x) = i + c) cos 2 fx + e2 sin2 Px (e 2 ) (IVe)

aE sin ox
(x) = arc tan( + E) cos x" (e3)

The latter form describes a "propagating" wave.
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APPENDIX V

Derivation of the Reflection and Transmission Coefficients
for an Infinite, Stratified Slab

Figure 1 shows three media. Medium I extends from x = - oo to

x f 0 and is assumed to be homogeneous with a real propagation constant k .

Medium III extends from x - d to x = co and has a propagation constant.

k3 = p3 + icr3. Medium II extends from x = 0 to x = d, and the behavior

of the electric field in this medium is governed by the system (9). (As

a matter of fact, the behavior of the electric field in Media I and III is

also governed by (9) with k =k 2 and k k 32respectively.) The X-Z

plane is termed the plane of incidence.

The derivation of the reflection and transmission coefficients

will be preceded by a derivation of the representations for the reflected

and transmitted waves. Following the traditional approach (cf., ref. 6,

pp. 492-494) we shall consider two cases: electric field vector normal to

the plane of incidence, and electric field vector in the plane of incidence.

The reflection and transmission coefficients themselves will be derived from

the amplitudes of the reflected and transmitted waves on the basis of the

energy propagation relations for plane waves given in Reference 6, p. 281.

CASE I. Electric Field Polarized Normal to the of Incidence
(TE-Wave).

In this case E = E = 0 in all three media. The equationz x

governing the behavior of E in Medium II is Equation (9a). As indicated
y

in the figure, the electric field in Medium I consists of the incident

wave, having the functional form A1e lk(x cos 01 + z sin 01 ), and the
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ikf

reflected wave, having the functional form Be l(-x cos i + z sin i

The electric field in Medium III consists of an outgoing wave (the trans-

mitted wave) having the functional form A3e k3 (x cos e3 + z sin e 3 ). No

attempt will be made at this point actually to resolve the field in Medium

II into forward and backward propagating waves. Equation (9a) can be

solved by separating variables. If the solution E is represented byy

E = (x)eiYz, where y is a constant, and 4) (x) is independent of z, thenY

(x) satisfies the ordinary differential equation

d2 + (k - y2)  0. (Va)

dx 
2

Let 4 = A2  +(x) + B2 4 (x) represent the general solution to (Va),

where 0+(x) and 0_(x) are independent solutions to (Va), the subscripts

+ and - being used here for possible future identification as forward and

backward propagating waves. Then the solution to (9a) in Medium II

can be expressed as

Ey = [A 2  +(x) + B2 0_(x)j eiYz (Vb)

It follows from Equations (lb) and (3) that

V x E = a 0H. (Vc)

The latter equation, when expressed in component form in the case we are

considering, becomes
dE

- dz = i i oH (a)

0 = H (b) (Vd)

dE_E = i.oanHz 
(c)dx 0
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Hence, H is the only component of the tangential component of thez

magnetic field, and the continuity of H as a function of x implies the
dE z

continuity of dx as a function of x. In summary, the boundary condi-

tions at x =0 and at x = d are

E is a continuous function of x at x =0 . (e1 )

dE
Vd is a continuous function of x at x = 0. (e

dx ( 2)

E is a continuous function of x at x = d. (e3) (Ve)y

dE
Y is a continuous function of x at x i d. (e4

dx 4

The ultimate goal in our procedure is to obtain B1 /A, and A3 /Al, from which

we may derive the reflection and transmission coefficients.

Application of conditions (Ve1 ) and (Ve2) leads to the following

pair of equations:

ik z sine i iYz(A1 + B1)el 1 =[A2 0+(O) + B2 9_(0)j e (f1)

(Vf)

ik cos 1 (AI - 1)eiklzaifl 1 = [A4+(0) + B2 4_0(0 eiYz (f2

where the primes on +(x) and 4_(x) denote differentiation with respect

to x. Application of conditions (V-e3) and (V-e4) leads to the pair:

FA20h(d) + B 2 (d)l ='y Ae 3k P sn3 +dcs03)g

(Vg)

LA2 4z+(d) + B2 _(d) eiYZ = ik (z sin e + d cos 3
(g

2)
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When we multiply through Equation (V-fl) by eiYZ, we obtain the relation

ei(k sin 1 y)z - constant. The latter relation must hold for all

values of z, since (V-f1) is to hold for all values of z. This situation

can prevail only if k sin 01 - y = 0. Similar reasoning on (V-gl) leads

to the conclusion that k3 sin O3 = y. In summary,

k1 sin 0I = Y = k3 sin 03. (Vh)

The latter can be regarded as a generalization of Snell's Law. Also, in

view of the relation (V-h), the exponential factors can be cancelled from

(V-f) and (V-g), yielding, after some rearrangement, the following set

of equations:

A2 0+(0) + B2 0(0) -B1  = A1

A + B (0) + ik cos GIBI - ik COSI A2 ( 2 - 1 1 1 11

ik dcos@
A2 0 + ( d ) + B2  .(d) -A3e i= 0

I I ik 3dcosQ 3
A2 + ( d ) + B2 40(d) -ik3cos Ae 3A3 0

The latter set of equations can be regarded as a set of simultaneous linear
ik 3d cos 93

algebraic equations in the unknowns A2, B2, B1, A3e . The

determinant of the unknowns is

+1 0

S+(0) 4. (0) -ik1COSO 1  0

A = +(d) 4.(d) 0+ (V)

(d) 0 +ik3cos@ 3

-37-

_ __ _.. .



(0) (0) (0c) c q.c) o0) (k o)

+ik case -ikcos1 ,

0+(o) 0-(o)
-k k3cos 01cos e3

+(d)

Let the minor of the element in the first row and third column

of A be denoted by Dl, and let the minor of the elements in the second

row and third column of A be denoted by D2. Then

(0 ~(0) 0 04()() 0'(o) 4(0)

D1 = 4+(d) 1(d) =ik 3cose

(d) (d) ik 3cos 03 1 0+(d) 0_d)(d) 4) '(d)

(k 1 )

(Vk)

(+(o) 0(o) 0+(o) 0(0) 4+(0) 4(o)

D 2 - +(d) 4 (d) 1 =ik 3cos @

0+_(d) (d) ik3cosG3  +(d) 4_(d) J+'(d) (d

(k2)

Then, (Vd)A =D + (ik1Cos@1 )D2.

Now, solving (Vd), by the use of Cramer's Rule, we find that
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-D + (ikcO1 )D2
1 = DI + (ikcos@ 1 )D2  1

B2= AA 1 V( 21k (cos 1  ) k3Cs030(

21k Cos@, [0+(d) -ik 3 cos 0e d]

B2 = / A1 V(m3 )

0+(0) _() -1 1

ik 3dcosQ 3  +(0 4)(O) ik1cose1  ik 1

0+(d) 4.(d) 0 0

+'(d) 4(d) 0 0 Aa AI

2iklCOSO1 [0+(d) . (d)- t+(d) 4_(d ikdcosO
A3 + A 1 e

V(m 4 )

The expression[ (x) 4.(x) - +(x) .(x) is the Wronskian of

4 +(x) and 4.(x) and is therefore, a constant, by Abel's Formula.

CASE II. Electric Field in the Plane of Incidence. (TM-Wave).

In this case, the magnetic field is normal to the plane of

incidence, H = H = 0, and H is a continuous function of x everywhere.x z y

Equation l(a), combined with (5) and (7), yields

S-i kEV x H = k

* cf. Hildebrand, Advanced Calculus for Engineers, Prentice-Hall,

1949, p. 31.
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which, when expressed in component form, yields the following:

- . kE (nl)az 04o x

V(n)
H(n 2 )

Clx UXo z2

Since E is a continuous function of x for all values of x and z, it
z iaH

follows from V(n2) that - is likewise. In summary, we may say that
V• 2  ka

x

the boundary conditions to be imposed on H are the following:I H Y

H and Y are continuous functions of x at x = 0 and at x = d. In
y k9 xaddition, we note that, since E x is a solution to the equation 9(b), an

equation whose variables are separable, we may express E in the formx

Ex = r(x) ei z V(O)

where 4 is a constant, and t(x) is a function of x alone satisfying the

differential equation

d 1 d (k2) + (k 2 0. V(p)
dx k dx

Combining equations V(nl) and V(0), we get

-- Y= -i k~kx) e z
az OXo

which, upon integration with respect to z, yields

H= 1 k (x) ei Z =/(X) ei Z,
y auV o

where we have introduced/O(x) for -io k

4101
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The procedure in this case then exactly parallels the procedure

used in Case I, except that we are now talking about magnetic fields

instead of electric fields. In place of the symbols A1, A2, A3 B1, B2,

0+(x), x, A,, Dl, D 2, use the symbols a,, c 2 ) a3' Oi' /0 +W,

GI, G2 , respectively, where the a's and O's are now magnetic

field amplitudes. Because of the slight difference in the form of the

boundary conditions, it turns out that a further modification arises in

that, in all of the determinants in question (but not in exponential

expressions) k I should be replaced by k(O)and k3 should be replacedk1

by "). Thus, we obtain, for example, comparing V(m4) and V(j),k3

21 k(O) cos [ f+(d) /_'(d) -/ + (d) (d

a3 =- a Ie

V(r)

4() ,O0)1 0

-ik(O)cosO I

k1

8= ()7 (0k 1  1v (s)

/+(d) (d) 0 1

, ,)ik(d)cos
3+ (d) /.(d) 0 k 

3

Reflection and transmission coefficients. Following the methods used in

Ref. 6, p. 496, we have the reflection and transmission coefficients Rj ,

T ,I RII, T11 for cases I and II given, respectively, by V(t) and V(u)

as follows (assuming kI real):

-41-



B 2 -
B1  2 -D1 + (ikl1Cos@ 1)D 2 2

A 1 D1 + (ik 1 oe)D 2  (t1)

V(t)

A3 1 2 Re(k 3cos6 3)
A k1 cos 91 - (t 2 )

(Kk c o'eRe(k3c e3 ) ( 2

% Ak 3 d c e 2 )o( ()

2 G_+_(ik(O)/k coB 9)G 2
R = I  + (ik(O)/k I Cos 01 )G2

V (u)
2

a, cose3TI = - =

Se4k2 (0) k ' d 3 2 2)

(u2)
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